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Abstract

In this paper, we introduce a family of photon-added as well as photon-
depleted coherent states related to the inverse of ladder operators acting on
hypergeometric coherent states. Their squeezing and antibunching properties
are investigated in both conventional (nondeformed) and deformed quantum
optics.

PACS numbers: 42.50.Ar, 42.50.Dv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Coherent states are now of utmost importance in several areas of theoretical physics ranging
from quantum optics to statistical mechanics and quantum field theory [1, 2]. These states
which emerge from the study of the quantum harmonic oscillator were introduced in the early
years of quantum mechanics [3] as wave packets whose dynamics resembles that of a classical
particle in a quadratic potential. Different representations of the harmonic oscillator have
been discussed extensively in the literature. The basic operators are the boson annihilation
and creation operators a and a†, satisfying the usual commutation relation [a, a†] = I . These
states are defined as the eigenstates of a.

The conventional coherent states have always been considered as the most classical ones
(among the pure quantum states, of course). Moreover, they can serve as a starting point
to introduce the nonclassical states that attracted considerable attention in quantum optics
over the last two decades. Such states exhibit some purely quantum statistical properties
such as squeezing, antibunching (sub-Poissonian statistics) (see [4] and references therein)
and thus possess latent applications in optical communication and in precision and sensitive
measurements [5].

To construct various families of nonclassical states, it is enough to make slight
modifications in each definition of the conventional coherent states mentioned above. For
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these reasons many class of states, which are labeled nowadays as nonclassical, appeared in
the literature as some kinds of generalized coherent states. To cite a few, let us mention the
following:

(i) The binomial states, defined as finite-linear superposition of field number states |n〉
weighted by a binomial counting probability distribution

|K;p;φ〉 =
K∑

n=0

[(
K

n

)
pn(1 − p)K−n

]1/2

einφ|n〉. (1)

(ii) The coherent states defined from the deformations of the canonical commutation relations.
Among these, one can mention the so-called maths-type and physics-type coherent states
and the coherent states à la Quesne (see [6] and references therein).

(iii) The nonlinear coherent states [7–9], which are defined as the right-hand eigenstates of the
product of the boson annihilation operator a and a non-constant function of the number
operator N = a†a,

f (N)a|α, f 〉 = α|α, f 〉 (2)

where f (N) is an operator-valued function of the number operator and α is a complex
eigenvalue.

Recently, Appl et al [10] have constructed and studied generalized hypergeometric
coherent states. These states are defined such that their normalization functions are given
in terms of generalized hypergeometric functions. They are defined by

|p; q; z〉 ≡ |a1, . . . , ap; b1, . . . , bq; z〉(p;q)

= pN−1/2
q (|z|2)

+∞∑
n=0

zn√
pρq(n)

|n〉 (3)

with the strictly positive parameter functions (of the discrete variable n)

pρq(n) ≡ pρq(a1, . . . , ap; b1, . . . , bq; n)

= �(n + 1)
(b1)n . . . (bq)n

(a1)n . . . (bp)n
(4)

where (a)n = �(a + n)/�(a) is the Pochhammer symbol. The generalized hypergeometric
(coherent) states (GH(C)Ss) are eigenstates of the lowering operator

pUq ≡
+∞∑
n=0

pfq(n)|n〉〈n + 1| (5)

with

pfq(n) =
√

(n + 1)
(n + b1) . . . (n + bq)

(n + a1) . . . (n + ap)
, (6)

i.e. pUq |p; q; z〉 = z|p; q; z〉. The action of the operators pUq and its adjoint pU
†
q on the Fock

basis {|n〉, n = 0, 1, 2, . . .} is given by

pUq |n〉 = pfq(n − 1)|n − 1〉 (7a)

pU †
q |n〉 = pfq(n)|n + 1〉. (7b)

The aim of this paper is to construct and discuss the quantum statistical properties of the
photon-added and photon-depleted states corresponding to the generalized hypergeometric
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coherent states |p; q; z〉. These states are constructed from the inverse of ladder operators
acting on the states |p; q; z〉. The states built in this way have extensively been studied in the
past decade as they can considerably reduce noise in any signoise [11] and can be produced in
nonlinear processes in cavities [12]. In the following, if there are no numerator (denominator),
this will be indicated by a dash, for example |0; 1; z〉= |−; b; z〉(0;1).

This paper is organized as follows. In section 2, we introduce the generalized inverse
of the raising and lowering operators by their actions on the Fock space and discuss some of
their properties. In sections 3 and 4, respectively, we introduce the photon-added and photon-
depleted states corresponding to the generalized hypergeometric coherent states |p; q; z〉 as
the eigenstates of the combination of the ladder operators pUq and pU

†
q and their inverse

operators. The physical properties of these states in the context of conventional quantum
optics are studied in section 5. Since pUq and pU

†
q generalize the conventional annihilation

and creation operators, we re-examine the physical properties of those states for deformed
photons, described by the operators pUq and pU

†
q in the context of deformed states in

section 6. Finally, conclusions are drawn in section 7.

2. Generalized inverse of boson operators

By following the work of Metha et al [13], we define the generalized inverse of boson operators,

pU−1
q and

(
pU

†
q

)−1
in terms of their actions on the number states |n〉 as follows:

pU−1
q |n〉 = 1

pfq(n)
|n + 1〉 (8a)

(
pU †

q

)−1|n〉 = 1

pfq(n − 1)
(1 − δn,0)|n − 1〉. (8b)

The relation

pUqpU−1
q |n〉 = pUq

(
1

pfq(n)
|n + 1〉

)
= |n〉 (9)

shows that pU−1
q is the right inverse of pUq while

(
pU

†
q

)−1
is the left inverse of pU

†
q , i.e.,

pUqpU−1
q = (

pU †
q

)−1
pU †

q = I. (10)

We further note that pU−1
q pUq and pU

†
q

(
pU

†
q

)−1
are given by

pU−1
q pUq = pU †

q

(
pU †

q

)−1 = I − |0〉〈0| (11)

where |0〉〈0| is the projection operator in the vacuum. Indeed, if n �= 0, pU−1
q pUq |n〉 =

pfq(n − 1)
(
pU−1

q |n − 1〉) = |n〉 and pU−1
q pUq |0〉 = 0, i.e., pU−1

q pUq |n〉 = (I − |0〉〈0|)|n〉.
Therefore, pU−1

q behaves as a creation operator of a photon, while
(
pU

†
q

)−1
behaves as

an annihilation operator of a photon.

Proposition 2.1. Let pU−m
q (resp.

(
pU

†
q

)−m
) be the mth power of pU−1

q (resp. of
(
pU

†
q

)−1
).

Then, the following relations hold:

pUm
q pU−m

q = (
pU †

q

)−m(
pU †

q

)m = I (12a)

pU−m
q pUm

q = (
pU †

q

)m(
pU †

q

)−m = I −
m−1∑
j=0

|j 〉〈j |. (12b)

3
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Proof. (12a) can be readily checked. (12b) can be recursively proved. Indeed, we suppose
that it holds for j < m − 1. For j = m, we have

pU−m
q pUm

q = pU−(m−1)
q pU−1

q pU 1
q pUm−1

q = pU−(m−1)
q (I − |0〉〈0|)pUm−1

q

= I −
m−2∑
j=0

|j 〉〈j | − pU−(m−1)
q |0〉〈0|pUm−1

q

= I −
m−2∑
j=0

|j 〉〈j | − |m − 1〉〈m − 1| = I −
m−1∑
j=0

|j 〉〈j |. (13)

�

Since the GHS |p; q; z〉 is an eigenstate of the lowering operator pUq, it would seem that
it is also an eigenstate of pU−1

q with eigenvalue z−1. However, it is not so. In fact,

pU−1
q |p; q; z〉 = pN−1/2

q (|z|2)
+∞∑
n=0

zn√
pρq(n)

pU−1
q |n〉

= pN−1/2
q (|z|2)

+∞∑
n=0

zn√
pρq(n)

1

pfq(n)
|n + 1〉

= pN−1/2
q (|z|2)

+∞∑
n=1

zn−1√
pρq(n)

|n〉

= pN−1/2
q (|z|2)z−1

(
+∞∑
n=0

zn√
pρq(n)

|n〉 − |0〉
)

= z−1 (|p; q; z〉 − pN−1/2
q (|z|2)|0〉) (14)

where use has been made of the relation pfq(n)
√

pρq(n) = √
pρq(n + 1). This means that the

action of the operator pU−1
q on the GHS |p; q; z〉 yields a one-photon excitation state in GHS.

Similarly, the GHS |p; q; z〉 is not an eigenstate of
(
pU

†
q

)−1
, though

(
pU

†
q

)−1
is a lowering

operator:

(
pU †

q

)−1|p; q; z〉 = zpN−1
q (|z|2)

+∞∑
n=0

zn

√
pρq(n)

pρq(n + 1)
|n〉. (15)

Hence, there exists no right eigenstate of the operator
(
pU

†
q

)−1
except for the vacuum

state. So, the action of the operator
(
pU

†
q

)−1
on |p; q; z〉 yields a one-photon annihilation

state in GHSs. Therefore, we have

Proposition 2.2. The repeated action of pU−1
q and

(
pU

†
q

)−1
on the GHSs |p; q; z〉 yields the

multiphoton-excitation states

|p; q; z, +m〉 = pC−1/2
q (|z|2;m)pU−m

q |p; q; z〉

= pC−1/2
q (|z|2;m)z−m

(
|p; q; z〉 − pN−1/2

q (|z|2)
m−1∑
n=0

zn√
pρq(n)

|n〉
)

(16)

with the normalization function

pCq(|z|2;m) = |z|−2m

(
1 − pN−1

q (|z|2)
m−1∑
n=0

|z|2n

pρq(n)

)

4
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and the multiphoton-annihilation states

|p; q; z,−m〉 = pS−1/2
q (|z|2;m)

(
pU †

q

)−m|p; q; z〉

= pS−1/2
q (|z|2;m)pN−1/2

q (|z|2)zm

+∞∑
n=0

zn

√
pρq(n)

pρq(n + m)
|n〉 (17)

with the normalization function

pSq(|z|2;m) = |z|2m
pN−1

q (|z|2)
+∞∑
n=0

|z|2n pρq(n)

(pρq(n + m))2

where m is a positive integer.

Proof. From the relations

(pUq)
−m|n〉 = 1

pfq(n) · · · pfq(n + m − 1)
|n + m〉

=
√

pρq(n)√
pρq(n + m)

|n + m〉 (18)

and(
pU †

q

)−m|n〉 = (1 − δn,0)(1 − δn−1,0) · · · (1 − δn−m+1,0)

pfq(n − 1)pfq(n − 2) · · · pfq(n − m)
|n − m〉

=
√

pρq(n − m)√
pρq(n)

(1 − δn,0)(1 − δn−1,0) · · · (1 − δn−m+1,0)|n − m〉 (19)

we readily obtain

pU−m
q |p; q; z〉 = pN−1/2

q (|z|2)
+∞∑
n=m

zn−m√
pρq(n)

|n〉 (20)

(
pU †

q

)−m|p; q; z〉 = pN−1/2
q (|z|2)

+∞∑
n=m

zn
√

pρq(n − m)

pρq(n)
|n − m〉 (21)

which can be used to get (16) and (17). �

The convergence of the normalization functions pCq(|z|2;m) and pSq(|z|2;m) does not
depend on m. Indeed, these functions converge, in the following cases:

for any z if p < q + 1 (22a)

|z| < 1 if p = q + 1 (22b)

|z| = 1 if p = q + 1, η < 1 (22c)

|z| = 1, z �= 1 if p = q + 1, 0 � η � 1, (22d)

where

η = Re

⎛
⎝ p∑

j=1

aj −
q∑

j=1

bj

⎞
⎠ .

In all other cases they diverge [14].

5



J. Phys. A: Math. Theor. 42 (2009) 025206 M N Hounkonnou and E B Ngompe Nkouankam

3. Generalized hypergeometric photon-added coherent states

From the relations pUm
q pU−m

q = I and pUq |p; q; z〉 = z|p; q; z〉, it is easy to see that
|p; q; z, +m〉 are the right eigenstates of the operators pU−m

q pUm+1
q with eigenstates z, i.e.,

pU−m
q pUm+1

q |p; q; z, +m〉 = z|p; q; z, +m〉. (23)

As the number states {|j 〉, j = 0, 1, 2, . . . , m − 1} are absent in the family of photon-added
states |p; q; z, +m〉, the states |p; q; z, +m〉 cannot therefore form a complete set. However,
each set of them, along with the number states {|j 〉, j = 0, 1, 2, . . . , m − 1}, does form a
complete set as we will see in the following.

Another family of generalized hypergeometric photon-added states can be constructed by
repeating pU

†
q on the states |p; q; z〉, namely

|p; q; z, +m〉′ = pC′−1/2
q (|z|2;m)

(
pU †

q

)m|p; q; z〉

= pC′−1/2
q (|z|2;m)pN−1/2

q (|z|2)
+∞∑
n=0

zn

√
pρq(n + m)

pρq(n)
|n + m〉 (24)

with the normalization function

pC′
q(|z|2;m) = pN−1

q (|z|2)
+∞∑
n=0

|z|2n pρq(n + m)

(pρq(n))2
. (25)

It can be easily proved that(
pU †

q

)m
pUq

(
pU †

q

)−m|p; q; z, +m〉′ = z|p; q; z, +m〉′. (26)

The relations
(
pU

†
q

)m
pUq

(
pU

†
q

)−m|j 〉 = 0, j ∈ {0, 1, 2, . . . , m} prove that the number states

|0〉, |1〉, . . . , |m〉 are the eigenstates of the operators
(
pU

†
q

)m
pUq

(
pU

†
q

)−m
with eigenvalue zero.

Thus, we get (m + 1)-fold degeneracy for this eigenvalue. Clearly, the states |p; q; z, +m〉′
does not form a complete set.

By recalling that, for p < q + 1 or p = q + 1, η > 1, the GHSs satisfy the resolution of
unity [10]

1

π

∫
d2z pwq(|z|2)|p; q; z〉〈p; q; z| = I ≡

+∞∑
n=0

|n〉〈n| (27)

with

pwq(x) = pwq(a1, . . . , ap; b1, . . . , bq; x)

= �(a1) . . . �(ap)

�(b1) . . . �(bq)
pFq(a1, . . . , ap; b1, . . . , bq; x)

× G
q−1,0
p,q+1(a1 − 1, . . . , ap − 1; b1 − 1, . . . , bq − 1; x) (28)

where pFq(a1, . . . , ap; b1, . . . , bq; x) is the generalized hypergeometric function and G is the
Meijer function, we obtain the corresponding completeness relations of the family of the states
|p; q; z, +m〉.
Proposition 3.1. The states |p; q; z, +m〉, along with the number states {|j 〉, j = 0, 1,

2, . . . , m − 1}, satisfy the completeness relation

1

π

∫
d2z pwq(|z|2)pCq(|z|2;m)|p; q; z, +m〉〈p; q; z, +m|(pU †

q

)m
pUm

q +
m−1∑
j=0

|j 〉〈j | = I.

(29)

6
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Proof. Indeed, by multiplying (27) by pU−m
q on the left-hand side and by pUm

q on the
right-hand side, we obtain

1

π

∫
d2z pwq(|z|2)pU−m

q |p; q; z〉〈p; q; z|pUm
q = I −

m−1∑
j=0

|j 〉〈j |. (30)

By multiplying again on the right-hand side by
(
pU

†
q

)−m(
pU

†
q

)m = I and using the relations

〈p; q; z, +m| = pC−1/2
q (|z|2;m)〈p; q; z|(pU †

q

)−m

and

pUm
q

(
pU †

q

)−m(
pU †

q

)m = (
pU †

q

)−m(
pU †

q

)m
pUm

q

we finally obtain

1

π

∫
d2z pwq(|z|2)pCq(|z|2;m)|p; q; z, +m〉〈p; q; z, +m|(pU †

q

)m
pUm

q +
m−1∑
j=0

|j 〉〈j | = I.

(31)

This equation shows that the states |p; q; z, +m〉, along with the number states {|j 〉, j =
0, 1, 2, . . . , m − 1}, span a complete Hilbert space. �

Proposition 3.2. The eigenstates of the operator
(
pU

†
q

)m
pUq

(
pU

†
q

)−m
, along with the number

states {|j 〉, j = 0, 1, 2, . . . , m − 1}, satisfy the completeness relation

1

π

∫
d2z pwq(|z|2)pC′

q(|z|2;m)|p; q; z, +m〉′′〈p; q; z, +m|pU−m
q

(
pU †

q

)−m
+

m−1∑
j=0

|j 〉〈j | = I.

(32)

Proof. By first multiplying (27) by
(
pU

†
q

)m
on the left-hand side and by pUm

q on the right-hand
side, we obtain

1

π

∫
d2z pwq(|z|2)

(
pU †

q

)m|p; q; z〉〈p; q; z|pUm
q = (

pU †
q

)m
pUm

q (33)

and then by pU−m
q

(
pU

†
q

)−m
, we get

1

π

∫
d2z pwq(|z|2)pC′

q(|z|2;m)|p; q; z, +m〉′′〈p; q; z, +m|pU−m
q

(
pU †

q

)−m
+

m−1∑
j=0

|j 〉〈j | = I

(34)

which proves the completeness of the eigenstates of the operator
(
pU

†
q

)m
pUq

(
pU

†
q

)−m
along

with the number states {|j 〉, j = 0, 1, 2, . . . , m − 1}. �

4. Generalized hypergeometric photon-depleted coherent states

One can easily prove that |p; q; z,−m〉 are the right eigenstates of the operators(
pU

†
q

)−m
pUq

(
pU

†
q

)m
with eigenvalue z, i.e.(

pU †
q

)−m
pUq

(
pU †

q

)m|p; q; z,−m〉 = z|p; q; z,−m〉. (35)

Besides, unlike the hypergeometric photon-added coherent states |p; q; z, +m〉, the family
|p; q; z,−m〉 forms a complete set. The corresponding completeness relation reads
1

π

∫
d2z pwq(|z|2)pSq(|z|2;m)|p; q; z,−m〉〈p; q; z,−m|pUm

q

(
pU †

q

)m = I. (36)

Therefore, the states |p; q; z,−m〉 can be used as a basis of a complete representation.

7
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5. Physical properties of the states |p; q; z, + m〉 and |p; q; z, − m〉 in nondeformed

quantum optics

In this section, we proceed to study some physical properties of the states |p; q; z, +m〉 and
|p; q; z,−m〉. For such a purpose, we need to evaluate the expectation values of some
monomials in the boson creation and annihilation operator a†, a. These are defined by

〈(a†)p
′
ar〉(+m) = 〈p; q; z, +m|(a†)p

′
ar |p; q; z, +m〉 (37a)

〈(a†)p
′
ar〉(−m) = 〈p; q; z,−m|(a†)p

′
ar |p; q; z,−m〉. (37b)

More explicitly, from the relations

ar |n〉 =
√

n!

(n − r)!
|n − r〉 0 � r � n (38a)

(a†)p
′ |n〉 =

√
(n + p′)!

n!
|n + p′〉 (38b)

we obtain

〈(a†)p
′
ar〉(+m) = pC̃−1

q (|z|2;m)

+∞∑
j=0

+∞∑
n=max(r−m,0)

z∗j zn√
pρq(n + m)

√
pρq(j + m)

×
√

(n + m)!(n + m − r + p′)!
(n + m − r)!

δj,n+p′−r

= pC̃−1
q (|z|2;m)zr−p′

+∞∑
j=0

|z|2j√
pρq(j + m + r − p′)

√
pρq(j + m)

×
√

(j + m + r − p′)!(j + m)!

(j + m − p′)!
(39)

and

〈(a†)p
′
ar〉(−m) = pS̃−1

q (|z|2;m)zr−p′
+∞∑
j=0

|z|2(j+m)
√

pρq(j + r − p′)
√

pρq(j)

pρq(j + m)pρq(j + m + r − p′)

×
√

(j + r − p′)!j !

(j − p′)!
(40)

where

pS̃q = pSqpNq, pC̃q = pCqpNq . (41)

5.1. Quadrature squeezing

Here, we study the quadrature squeezing of the states |p; q; z, +m〉 and |p; q; z,−m〉. For
that, let us consider the following Hermitian quadrature operators:

X1 = a + a†
√

2
X2 = a − a†

√
2i

. (42)

Then, they satisfy the following uncertainty relation:〈
	X2

1

〉〈
	X2

2

〉
� 1

4 (43)

8
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where 〈	X2〉 = 〈X2〉 − 〈X〉2. From (43), it follows that a state is squeezed if and only if any
of the following conditions hold:〈

	X2
1

〉
< 1

2

〈
	X2

2

〉
< 1

2 . (44)

For the states |p; q; z,±m〉 these conditions can be expressed as

Fjp = 2
(〈
X2

j

〉
(+m)

− (〈Xj 〉(+m))
2) − 1 < 0 j = 1, 2 (45)

Fjn = 2
(〈
X2

j

〉
(−m)

− (〈Xj 〉(−m))
2) − 1 < 0 j = 1, 2. (46)

Now using the above results and the identities

2
〈
	X2

1

〉 − 1 = 〈a2〉 + 〈a2〉† + 2〈a†a〉 − 2〈a〉〈a〉† − 〈a〉2 − (〈a〉2)† (47a)

and

2
〈
	X2

2

〉 − 1 = −〈a2〉 − 〈a2〉† + 2〈a†a〉 − 2〈a〉〈a〉† + 〈a〉2 + (〈a〉2)† (47b)

we find that squeezing in the quadrature X1 occurs for the states |p; q; z, +m〉 whenever

F1p = (
pC̃q(|z|2;m)p
q(|z|2;m) − p�2

q(|z|2;m)
)

cos(2θ)

+ pC̃q(|z|2;m)pϒq(|z|2;m) − p�2
q(|z|2;m) < 0 (48)

and that in the quadrature X2 occurs whenever

F2p = (
p�2

q(|z|2;m) − pC̃q(|z|2;m)p
q(|z|2;m)
)

cos(2θ)

+ pC̃q(|z|2;m)pϒq(|z|2;m) − p�2
q(|z|2;m) < 0 (49)

where

p�q(|z|2;m) =
+∞∑
n=0

|z|2n
√

n + m + 1√
pρq(n + m)

√
pρq(n + m + 1)

(50a)

pϒq(|z|2;m) =
+∞∑
n=0

|z|2(n−1)(n + m)

pρq(n + m)
(50b)

p
q(|z|2;m) =
+∞∑
n=0

|z|2n
√

(n + m + 1)(n + m + 2)√
pρq(n + m)

√
pρq(n + m + 2)

(50c)

pC̃q(|z|2;m) =
+∞∑
n=0

|z|2n

pρq(n + m)
(50d)

and the angle θ defined by z = |z| eiθ is limited to the interval from 0 to π or from −π/2 to
π/2. On the other hand, we find that the states |p; q; z,−m〉 exhibit squeezing in X1 provided

F1n = (
pS̃ ′

q(|z|2;m)pDq(|z|2;m) − pA2
q(|z|2;m)

)
cos(2θ)

+ pS̃ ′
q(|z|2;m)pBq(|z|2;m) − pA2

q(|z|2;m) < 0 (51)

where

pAq(|z|2;m) =
+∞∑
n=0

|z|2n
√

pρq(n)
√

pρq(n + 1)
√

n + 1

pρq(n + m)pρq(n + m + 1)
(52a)

9
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Figure 1. (a) Three-dimensional plot of F1p , corresponding to squeezing of X1 for the states |−; b;
z, +m〉 versus x = |z|2 and θ for b = 1/30,m = 1. (b) Three-dimensional plot of F2p ,
corresponding to squeezing of X2 for the states |−; b; z, +m〉 versus x = |z|2 and θ for b = 1/30,

m = 1.

pBq(|z|2;m) =
+∞∑
n=0

|z|2(n−1)
pρq(n)n

(pρq(n + m))2
(52b)

pDq(|z|2;m) =
+∞∑
n=0

|z|2n
√

(n + 1)(n + 2)
√

pρq(n)
√

pρq(n + 2)

pρq(n + m)pρq(n + m + 2)
(52c)

pS̃ ′
q(|z|2;m) =

+∞∑
n=0

|z|2n
pρq(n)

(pρq(n + m))2
(52d)

and in the X2 quadrature provided

F2n = (
pA2

q(|z|2;m) − pS̃ ′
q(|z|2;m)pDq(|z|2;m)

)
cos(2θ)

+ pS̃ ′
q(|z|2;m)pBq(|z|2;m) − pA2

q(|z|2;m) < 0. (53)

In figures 1(a) and (b), we have shown the three-dimensional plot of H1p = 10−6F1p

(where F1p corresponding to squeezing of X1 for the states |−; b; z, +m〉) and H2p = 10−6F2p

(where F2p corresponding to squeezing of X2 for the states |−; b; z, +m〉) versus x = |z|2 and
θ , for b = 1/30 and m = 1. It is seen that the maximum squeezing of X1 occurs at θ = ±π/2
while the maximum squeezing of X2 occurs at θ = 0. It is also observed that for θ = 0, the
variance

〈
	X2

1

〉
(+m)

is squeezed while
〈
	X2

2

〉
(+m)

turns to be unsqueezed as x increases.

In figures 2(a) and (b), respectively, the three-dimensional plots of H1n ≡ 10−6F1n (where
F1n corresponds to squeezing of X1 for the states |−; b; z,−m〉) and H2n ≡ 10−6F2n (where
F2n corresponds to squeezing of X2 for the states |−; b; z,−m〉) versus x = |z|2 and θ for
b = 1/30 and m = 1 are shown. We note that for larger x the maximum squeezing of X1

occurs at θ = 0 while the maximum squeezing of X2 occurs at θ = ±π/2. It is also observed
that for θ = 0, in the states |−; b; z,−m〉, the quadrature X1 is unsqueezed while X2 is
squeezed.

10
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Figure 2. (a) Three-dimensional plot of H1n = 10−6F1n, corresponding to squeezing of X1 for
the states |−; b; z,−m〉 versus x = |z|2 and θ for b = 1/30, m = 1. (b) Three-dimensional plot
of H2n ≡ 10−6F2n, corresponding to squeezing of X2 for the states |−; b; z, −m〉 versus x = |z|2
and θ for b = 1/30,m = 1.

5.2. Photon number distribution

To examine sub-Poissonian behavior of the states |p; q; z, +m〉 and |p; q; z,−m〉, we need to
consider the second-order correlation function, named the Mandel Parameter [15]

Q(±m) = 〈(a†)2a2〉(±m) − 〈a†a〉2
(±m)

〈a†a〉(±m)

. (54)

Then, the states |p; q; z,±m〉 exhibit super-Poissonian/Poissonian/sub-Poissonian behavior
according to Q(±m) > / = / < 1.

By using (39) and (40) the Mandel parameter reads

Q(+m) =
(

+∞∑
n=0

|z|2n(n + m)(n + m − 1)

pρq(n + m)

) (
+∞∑
n=0

|z|2n(n + m)

pρq(n + m)

)−1

−
(

+∞∑
n=0

|z|2n(n + m)

pρq(n + m)

)(
+∞∑
n=0

|z|2n

pρq(n + m)

)−1

, (55)

for the states |p; q; z, +m〉, and

Q(−m) =
(

+∞∑
n=0

|z|2nn(n − 1)pρq(n)

(pρq(n + m))2

)(
+∞∑
n=0

|z|2nnpρq(n)

(pρq(n + m))2

)−1

−
(

+∞∑
n=0

|z|2nnpρq(n)

(pρq(n + m))2

) (
+∞∑
n=0

|z|2n
pρq(n)

(pρq(n + m))2

)−1

, (56)

for the states |p; q; z,−m〉.
In figures 3(a) and (b), we show the effects of the parameters a, b and m on the variation

of the Mandel parameter as a function of x for the states |−; b; z, +m〉 and |−; b; z,−m〉,
respectively. We conclude from these numerical results that the states |−; b; z, +m〉 always
exhibit sub-Poissonian statistics, while by increasing x the states |−; b; z,−m〉 show a super-
Poissonian behavior.
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Figure 3. (a) Variation of the Mandel parameter Q for the states |−; b; z, +m〉 versus x = |z|2:
b = 1

30 , m = 1(dotdash); b = 1
30 ,m = 2(dash); b = 1

30 ,m = 3(solid); b = 1
30 , m = 4(dot).

(b) Variation of the Mandel parameter Q for the states |−; b; z, −m〉 versus x = |z|2:b = 1
30 ,

m = 1(dotdash); b = 1
30 ,m = 2(dash); b = 1

30 , m = 3(solid); b = 1
30 , m = 4(dot).

6. Physical properties in deformed quantum optics

For p < q + 1, the operators pUq and pU
†
q may be considered as a generalization of the usual

annihilation and creation operators. Indeed, under this condition

0U0 =
+∞∑
n=0

√
n + 1|n〉〈n + 1| ≡ a, 0U

†
0 =

+∞∑
n=0

√
n + 1|n + 1〉〈n| ≡ a†

and |0; 0; z〉 corresponds to the conventional coherent states. Hence, they may be interpreted
as describing ‘dressed’ photons, which may be invoked in the phenomenological model
explaining some observable phenomena [16]. The physical properties considered in the
previous section may therefore be re-examined for the deformed photons.

To proceed with such an analysis, we first calculate the expectation values of various
operators, namely, pUq, pU 2

q , pU
†
qpUq, pUqpU

†
q and

(
pU

†
q

)2
pU 2

q in the states |p; q; z, +m〉
and |p; q; z,−m〉.

For the states |p; q; z, +m〉, one readily obtains

〈pUq〉(+m) = pC̃−1
q (|z|2;m)z

+∞∑
j=0

|z|2j

pρq(j + m)
= zpC̃−1

q (|z|2;m)pOq(|z|2;m) (57a)

〈
pU 2

q

〉
(+m)

= pC̃−1
q (|z|2;m)z2

+∞∑
j=0

|z|2j

pρq(j + m)
= z2

pC̃−1
q (|z|2;m)pOq(|z|2;m) (57b)

〈
p
U †

qpUq

〉
(+m)

= pC̃−1
q (|z|2;m)

+∞∑
j=0

|z|2j

pρq(j + m − 1)
= pC̃−1

q (|z|2;m)pQq(|z|2;m) (57c)

〈
p
UqpU †

q

〉
(+m)

= pC̃−1
q (|z|2;m)

+∞∑
j=0

|z|2j
pf 2

q (j + m)

pρq(j + m)
= pC̃−1

q (|z|2;m)pQ′
q(|z|2;m) (57d)

12
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〈(
pU †

q

)2
pU 2

q

〉
(+m)

= pC̃−1
q (|z|2;m)

+∞∑
j=0

|z|2j

pρq(j + m − 2)
(57e)

and for the states |p; q; z,−m〉, we have

〈pUq〉(−m) = pS̃−1
q (|z|2;m)z

+∞∑
j=0

|z|2(j+m)
pρq(j + 1)

pρq(j + m)pρq(j + m + 1)
(58a)

〈
pU 2

q

〉
(−m)

= pS̃−1
q (|z|2;m)z2

+∞∑
j=0

|z|2(j+m)
pρq(j + 2)

pρq(j + m)pρq(j + m + 2)
(58b)

〈
pU †

qpUq

〉
(−m)

= pS̃−1
q (|z|2;m)

+∞∑
j=1

|z|2(j+m)
pρq(j)pf 2

q (j − 1)

(pρq(j + m))2
(58c)

〈
pUqpU †

q

〉
(−m)

= pS̃−1
q (|z|2;m)

+∞∑
j=0

|z|2(j+m)
pρq(j + 1)

(pρq(j + m))2
(58d)

〈(
pU †

q

)2
(pUq)

2〉
(−m)

= pS̃−1
q (|z|2;m)

+∞∑
j=2

|z|2(j+m)
pρq(j)pf 2

q (j − 1)pf 2
q (j − 2)

(pρq(j + m))2
. (58e)

6.1. Quadrature squeezing in deformed quantum optics

To investigate the quantum fluctuations of the quadrature operators in the context of deformed
quantum optics, we consider deformed quadratures

X1u = pUq + pU
†
q

2
and X2u = pUq − pU

†
q

2i
. (59)

In any state, they satisfy the uncertainty relation〈
	X2

1u

〉〈
	X2

2u

〉
� 1

4 |〈[X1u,X2u]〉|2 . (60)

Therefore, a state will exhibit amplitude squeezing if〈
	X2

1u

〉
< 1

2 |〈[X1u,X2u]〉| , 〈
	X2

2u

〉
< 1

2 |〈[X1u,X2u]〉| (61)

which is equivalent to

F ′
ip = 〈

X2
iu

〉
(+m)

− 〈Xiu〉2
(+m) − 1

4

∣∣〈[
pUq, pU †

q

]〉
(+m)

∣∣ < 0 i = 1, 2 (62)

F ′
in = 〈

X2
iu

〉
(−m)

− 〈Xiu〉2
(−m) − 1

4

∣∣〈[
pUq, pU †

q

]〉
(−m)

∣∣ < 0 i = 1, 2. (63)

Therefore, by using (57a)–(57d) we find that

F ′
1p = F ′

2p = 1

2
pC̃−1

q (|z|2;m)
(
pQq(|z|2;m) − |z|2pC̃q(|z|2;m)

)
= 1

2
pC−1

q (|z|2;m)

pρq(m − 1)
(64)

if m � 1 and F ′
1p = F ′

2p = 0 if m = 0. In a nutshell,

F ′
1p = F ′

2p =

⎧⎪⎨
⎪⎩

1

2
pC−1

q (|z|2;m)

pρq(m − 1)
if m � 1

0 if m = 0.

(65)
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Therefore, there is no squeezing either in X1u or X2u for the states |p; q; z, +m〉. Moreover,
we have

〈
	X2

1u

〉 = 〈
	X2

2u

〉 =

⎧⎪⎪⎨
⎪⎪⎩

1

2
|〈[X1u,X2u]〉(+m)| +

1

2
pC−1

q (|z|2;m)

pρq(m − 1)
if m � 1

1

2
|〈[X1u,X2u]〉(0)| if m = 0

(66)

which indicates that, while the states |p; q; z〉 are intelligent states for the deformed operators
X1u,X2u, the photon-added |p; q; z, +m〉(m � 1) are not so. On the other hand, by using
(58a)–(58d) we find that the states |p; q; z,−m〉 exhibit squeezing in the X1u quadrature
provided

F ′
1n = (

pS̃ ′
q(|z|2;m)pUq(|z|2;m) − pT 2

q (|z|2;m)
)

cos(2θ)

+ pS̃ ′
q(|z|2;m)pVq(|z|2;m) − pT 2

q (|z|2;m) < 0 (67)

and that, in the quadrature X2u, it occurs whenever

F ′
2n = (

pT 2
q (|z|2;m) − pS̃ ′

q(|z|2;m)pUq(|z|2;m)
)

cos(2θ)

+ pS̃ ′
q(|z|2;m)pVq(|z|2;m) − pT 2

q (|z|2;m) < 0 (68)

where

pTq(|z|2;m) =
+∞∑
j=0

|z|2j
pρq(j + 1)

pρq(j + m)pρq(j + m + 1)
(69a)

pUq(|z|2;m) =
+∞∑
j=0

|z|2j
pρq(j + 2)

pρq(j + m)pρq(j + m + 2)
(69b)

pVq(|z|2;m) =
+∞∑
j=0

|z|2(j−1)
pρq(j)pf 2

q (j − 1)

(pρq(j + m))2
. (69c)

In figure 4(a) and (b), respectively, we have shown the three-dimensional plots of
H ′

1n ≡ 10−6F ′
1n (where F ′

1n corresponds to squeezing of X1u for the states |−; b; z,−m〉)
and H ′

2n ≡ 10−6F ′
2n (where F ′

2n corresponds to squeezing of X2u for the states |−; b; z,−m〉)
versus x = |z|2 and θ for b = 1/30 and m = 1. It is seen that the quadrature operators X1u

(resp. X2u) exhibit maximum squeezing at θ = 0 (resp. θ = ±π/2). We observe that for
θ = 0 the fluctuation of X1u is always unsqueezed while that of X2u is squeezed.

6.2. Photon number distribution in deformed quantum optics

In order to examine photon-counting statistics of deformed photons, one can generalize the
notion of the Mandel parameter as follows:

Qh,±m :=
〈(

pU
†
q

)2
pU 2

q

〉 − (〈
pU

†
qpUq

〉)2〈
pU

†
qpUq

〉 . (70)

By using the above results, it is readily obtained

Qh,+m =
⎛
⎝ +∞∑

j=0

|z|2j

pρq(j + m − 2)

⎞
⎠

⎛
⎝ +∞∑

j=0

|z|2j

pρq(j + m − 1)

⎞
⎠

−1

−
⎛
⎝ +∞∑

j=0

|z|2j

pρq(j + m − 1)

⎞
⎠

⎛
⎝ +∞∑

j=0

|z|2j

pρq(j + m)

⎞
⎠

−1

(71)
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Figure 4. (a) Three-dimensional plot of H ′
1n ≡ 10−6F ′

1n, corresponding to squeezing of X1 for
the states |−; b; z,−m〉 versus x = |z|2 and θ for b = 1/30, m = 1. (b) Three-dimensional plot
of H ′

2n ≡ 10−6F ′
2n, corresponding to squeezing of X2 for the states |−; b; z, −m〉 versus x = |z|2

and θ for b = 1/30,m = 1.
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Figure 5. (a) Variation of the Mandel parameter Qh for the states |−; b; z, +m〉 versus x = |z|2:
b = 1

30 , m = 1(dotdash); b = 1
30 ,m = 2(dash); b = 1

30 ,m = 3(solid); b = 1
30 , m = 4(dot).

(b) Variation of the Mandel parameter Qh for the states |−; b; z, −m〉 versus x = |z|2:b = 1
30 ,

m = 1(dotdash); b = 1
30 ,m = 2(dash); b = 1

30 , m = 3(solid); b = 1
30 , m = 4(dot).

for the states |p; q; z, +m〉 and

Qh,−m =
⎛
⎝ +∞∑

j=2

|z|2j
pρq(j)pf 2

q (j − 1)pf 2
q (j − 2)

(pρq(j + m))2

⎞
⎠

⎛
⎝ +∞∑

j=1

|z|2j
pρq(j)pf 2

q (j − 1)

(pρq(j + m))2

⎞
⎠

−1

−
⎛
⎝ +∞∑

j=1

|z|2j
pρq(j)pf 2

q (j − 1)

(pρq(j + m))2

⎞
⎠

⎛
⎝ +∞∑

j=0

|z|2j
pρq(j)

(pρq(j + m))2

⎞
⎠

−1

(72)

for the states |p; q; z,−m〉.
In figures 5(a) and (b), we show the effects of the parameters a, b and m on the variation

of the Mandel parameter as a function of x for the states |−; b; z, +m〉 and |−; b; z,−m〉,
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respectively. We conclude from these numerical results that the states |−; b; z, +m〉 always
exhibit sub-Poissonian statistics. It is worth noticing that in this case, for fixed b, the sub-
Poissonian behavior is more pronounced as x and m increase, while as x increases, the states
|−; b; z,−m〉 show a transition from sub-Poissonian to super-Poissonian statistics.

7. Concluding remarks

In the present paper, by making use of the properties of the inverse of the ladder operators pUq

and pU
†
q in the Fock space, we have constructed photon-added and photon-depleted coherent

states corresponding to the generalized hypergeometric coherent states |p; q; z〉. These states
are introduced as the eigenstates of the combination of the ladder operators pUq and pU

†
q

and their inverse. The completeness of the sets of the states |p; q; z, +m〉 and |p; q; z,−m〉,
along with the number states {|j 〉, j = 0, 1, 2, . . . , m − 1}, has been thoroughly discussed.
In addition to the mathematical properties, the physical characteristics of the particular states
|−; b; z, +m〉 and |−; b; z,−m〉 have been analytically and numerically investigated in the
context of both nondeformed and deformed quantum optics. More specifically,

(i) it has been found that for conventional photons, described by the operators a and a†,
the quadrature operator X1 (resp. X2) exhibits maximum squeezing at θ = ±π/2 (resp.
θ = 0) in the states |−; b; z, +m〉. At the states |−; b; z,−m〉, the quadrature operator
X1 (resp. X2) exhibits maximum squeezing at θ = 0 (resp. θ = ±π/2).

(ii) In the context of nondeformed quantum optics, the states |−; b; z, +m〉 show a sub-
Poissonian statistics while the states |−; b; z,−m〉 are always super-Poissonian.

(iii) In the context of deformed photons described by pUq and pU
†
q , the quadrature operator

X1u (resp. X2u) shows maximum squeezing at θ = 0 (resp. θ = ±π/2) in the states
|−; b; z,−m〉. They are unsqueezed in the states |p; q; z, +m〉 for m � 1. Moreover, the
states |p; q; z, 0〉 ≡ |p; q; z〉 are intelligent in the quadrature operators X1u and X2u.

(iv) In the context of deformed quantum optics, the states |−; b; z, +m〉 show a sub-Poissonian
statistics while the states |−; b; z,−m〉 show a transition from sub-Poissonian to super-
Poissonian behavior.
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